

## WEST BENGAL STATE UNIVERSITY

B.Sc. Honours 6th Semester Examination, 2023

## PHSACOR13T-PHYSICS (CC13)

Time Allotted: 2 Hours

Full Marks: 40

The figures in the margin indicate full marks.

Candidates should answer in their own words and adhere to the word limit as practicable.

All symbols are of usual significance.

## Question No. 1 is compulsory and any two questions from the rest

1. Answer any ten questions from the following:

 $2 \times 10 = 20$ 

- (a) Calculate the skin depth for radio waves of wavelength 3 m (in free space) in copper, the electrical conductivity of which is  $6 \times 10^7$  s/m.
- (b) Find the refractive index of glass, if the Brewster angle for light of a given wavelength be 60°. Find the corresponding angle of refraction.
- (c) What are the special properties of quartz that make it suitable for use as optical fibre material?
- (d) Show that for a waveguide propagation.  $v_g v_p = c^2$  where  $v_g$ ,  $v_p$  and c stand for group velocity, phase velocity and speed of light in free space respectively.
- (e) What do you mean by TE, TM and TEM waves?
- (f) Define optic axis of a crystal.
- (g) The terms 'poor' and 'good' conductor depend on frequency Explain.
- (h) The magnetic intensity in a region of free space is given by  $\bar{H} = H_0 \hat{y} \cos \omega (t z/c)$ , where 'c' is the speed of light. What is the displacement current density if there is no free charge?
- (i) How one can get plane polarized light using double refraction in a crystal?
- (j) State and explain Malus's law.
- (k) What do you mean by electromagnetic momentum density? What is its unit?
- (l) For water-air interface, the refractive index of water is 1.33 for visible light and 9.0 for radio waves. Compare the reflectance in the two cases.
- (m) Show that in a conductor, the electric and magnetic fields are not in phase.
- (n) What is Brewster's angle?

## CBCS/B.Sc./Hons./6th Sem./PHSACOR13T/2023

2. (a) For a linear medium with  $\vec{B} = \mu \vec{H}$  and  $\vec{D} = \varepsilon \vec{E}$ , show that

$$\vec{\nabla} \cdot (\vec{E} \times \vec{H}) = -\frac{1}{2} \frac{\partial}{\partial t} (\vec{E} \cdot \vec{D} + \vec{B} \cdot \vec{H}) - \vec{J} \cdot \vec{E} ,$$

5

2

3

2

2

2

3

3

4

4+2

2

2

1+1+2

- where the symbols stand for the standard notations of electromagnetic theory.
- (b) Find the reflectance and transmittance of a plane electromagnetic wave incident normally from air on a dielectric surface of refractive index 1.4.
- (c) Consider that the electric field vectors of two electromagnetic waves propagating in the z-direction in free space are  $\vec{E}_1 = \hat{i}E_0\cos(kz \omega t) + \hat{j}E_0\sin(kz \omega t)$  and  $\vec{E}_2 = \hat{i}E_0\sin(kz \omega t) + \hat{j}E_0\cos(kz \omega t)$ . Determine the state of polarization of the wave resulting from the superposition of these two waves.
- 3. (a) "In the microwave region, the surface of a pure and that of a silver coated brass wave-guide appears identical" Explain.
  - (b) A rectangular air-filled copper wave guide with dimension as 2 cm width, 1 cm height and 30 cm length is operated at 9 GHz with dominant mode. Find the cutoff frequency, guide wavelength and phase velocity.
  - (c) A 30 cm long tube containing sugar solution shows a rotation of  $\pi/6$  of the plane of vibration of a plane polarized light. Find the strength of the solution. Given the specific rotation of sugar is equal to  $66.5 \, \mathrm{dm}^{-1} \mathrm{g}^{-1} \mathrm{cm}^{-3}$ .
  - (d) What do you mean by O-ray and E-ray?
- 4. (a) Show how Maxwell's equations in free space imply local conservation of charge (continuity equation).
  - (b) Show that under a gauge transformation of the vector and scalar potential,  $\vec{A}$  and  $\phi$ , the electromagnetic field vectors are invariant.
  - (c) Briefly describe the working principle of a Babinet Compensator.
- 5. (a) A plane electromagnetic wave is incident obliquely on a boundary between media of different electric and magnetic properties. Derive Fresnel's formula. What is the phase change of the reflected wave when there is no transmission?
  - (b) A step index fibre has a core of refractive index 1.55 and a cladding of refractive index 1.53. Determine its numerical aperture and acceptance angle.
  - (c) A plane EM wave with  $\vec{B} = 3 \times 10^{-6}$  T and travelling in vacuum falls normally on a surface and is totally reflected. Calculate the pressure exerted on the surface.

6027